
The Integrable Bootstrap Program at Large
N and its Applications in Gauge Theory

Axel Cortés Cubero

The Graduate School & University Center of The City University
of New York

Baruch College, The City University of New York
Thesis advisor: Peter Orland



The Principal Chiral Sigma Model (PCSM)

Action : S =
N

2g2

∫
d2xTr∂µU

†(x)∂µU(x),

U(x) ∈ SU(N) :

SU(N)×SU(N) symmetry : U(x)→ VLU(x)VR, VL,R ∈ SU(N).

Associated Noether currents:

jLµ (x)ca =
−iN
2g2

∂µUab(x)U † bc(x),

jRµ (x)db =
−iN
2g2

U † da(x)∂µUab(x)

Theory of asymptotically free massive particles, with left and right
color.

We work in the ’tHooft (planar) limit.
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Integrable Quantum Field Theory
Integrability: Equal number of conservation laws and degrees of

freedom (infinite in QFT)
In Quantum field Theory there is no particle production. Set of

momenta is conserved {p}in = {p}out. Scattering is factorizable.

Yang-Baxter equation
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The S-Matrix
Particles and antiparticles have two color charges (color dipoles).

Two-particle S-matrix determined by Yang-Baxter equation, uni-
tarity and crossing symmetry.

out〈P, θ′1, c1, d1;P, θ′2, c2, d2|P, θ1, a1, b1;P, θ2, a2, b2〉 in

= S(θ,N)

(
δc1a1
δc2a2
− 2πi

Nθ
δc2a1
δc1a2

)
×
(
δd1
b1
δd2
b2
− 2πi

Nθ
δd2
b1
δd2
b2

)
〈θ′1|θ1〉〈θ′2|θ2〉

θ = rapidity :E = m cosh θ, p = m sinh θ, E2 = p2 + m2

rapidity difference θ = θ1 − θ2

At largeN : S(θ,N) = 1 +O
(

1

N 2

)
.

Particle-antiparticle related by crossing θ → θ̂ = πi− θ.
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Particle-antiparticle scattering

SAP (θ) = SPP (πi− θ)
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General Form Factors
% Short-hand notation: |A1〉 = |A, θ1, b1, a1〉, |P1〉 = |P, θ1, a1, b1〉

Form factor of operatorO(x) :

〈0|O(x)|A1, A2, . . . , Al, Pl+1, . . . , Pn〉 = e−ix·
∑
pF({θ}){a}{b} =

We eventually want to calculate correlation functions

〈0|O(x)O(0)|0〉 =
∑

Ψ

〈0|O(x)|Ψ〉〈Ψ|O(0)|0〉
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The current operator ansatz

〈0|jLµ (x)a0a2M+1
|A1; . . . ;AM ;PM+1; . . . ;P2M〉

= [p1+· · ·+pM−(pM+1+· · ·+p2M)]µ
e−ix·

∑
p

NM−1

∑
σ,τ∈SM

Fστ(θ1, . . . , θ2M)

×
[∏M

j=0 δajaσ(j)+M

∏M
k=1 δbkbτ(k)+M

− 1
N δa0a2M+1

δalσaσ(0)+M

∏
j=1, j 6=lσ δajaσ(j)+M

∏M
k=1 δbkbτ(k)+M

]
,

σ ∈ SM , takes {1, 2, . . . ,M} to {σ(1), σ(2), . . . , σ(M)}

7



Smirnov’s form factor axioms

Scattering Axiom (Watson′s theorem)

〈0|j|P2, A1〉 = S12
AP 〈0|j|A1, P2〉

Periodicity axiom

〈0|j|A1(θ1), P2(θ2)〉 = 〈0|j|P2(θ2 − 2πi), A1(θ1)〉
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Smirnov’s form factor axioms

Annihilation pole axiom

The antiparticle A2 and the particle P4 can annihilate. The four
particle form factor needs to have an annihilation pole at θ24 = −πi.

9



Underlying Abelian Structure at Large N
The excitations in the incoming state of the form factor only in-

teract with each other if they have color indices contracted together.

We can order incoming particle such that they only interact with
their two nearest neighbors. Particles now have the simple commu-
tation relation

A†(θj)A
†(θk) =

θk − θj + πi

θk − θj − πi
A†(θk)A

†(θj), if k = j + 1

Behaves like colorless Abelian particles at large N .

This is not related to integrability, but to the large N limit.

Is a nonintegrable large N bootstrap possible?
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Solution from Smirnov’s axioms

Fστ(θ) =
gστ∏M

j=1, j 6=lσ(θj − θσ(j)+M + πi)
∏M

k=1(θk − θτ(k)+M + πi)
,

From the annihilation pole axiom:

gστ =

{
2πi(4π)M−1, forσ(j) 6= τ (j), for all j

0 , else

unphysical double poles go away!
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The two-point function
We can calculate exactly the two-current correlator,

Wµν(x)a0c0e0f0 =
1

N
〈0|jLµ (x)a0c0 j

L
ν (0)e0f0|0〉

=
1

N

∑
Ψ

〈0|jLµ (x)a0c0|Ψ〉 〈Ψ|j
L
ν (0)e0f0|0〉

〈0|jLµ (x)a0c0|Ψ〉 are the form factors we know

Wµν(x)a0c0e0f0 =

∞∑
M=1

∫  2M∏
j=1

dθj
4π

 e−ix
∑
p4π2(4π)2M−2

×[p1+p3+· · ·+p2M−1−(p2+· · ·+p2M)]µ[p1+· · ·+p2M−1−(p2+· · ·+p2M)]ν

×(δa0e0δc0f0 −
1

N
δa0c0δe0f0)

2M−1∏
j=1

[
1

(θj − θj+1)2 + π2

]
12



The energy-momentum two-point function

W T
µναβ(x) =

1

N 2
〈0|Tµν(x)Tαβ(0)|0〉

=

∞∑
M=1

π

8

∫  2M∏
j=1

dθj

 e−ix
∑
p

×[p1+p3+· · ·+p2M−1−(p2+· · ·+p2M)]µ[p1+· · ·+p2M−1−(p2+· · ·+p2M)]ν

×[p1+p3+· · ·+p2M−1−(p2+· · ·+p2M)]α[p1+· · ·+p2M−1−(p2+· · ·+p2M)]β

× 1

[(θ1 − θ2M)2 + π2]

2M−1∏
j=1

1

[(θj − θj+1)2 + π2]
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What do we know about finite N?
The S-matrix is known:

SPP (θ,N) =
sinh(θ2 −

πi
N )

sinh(θ2 + πi
N )

[
Γ(iθ/2π + 1)Γ(−iθ/2π − 1

N )

Γ(iθ/2π + 1− 1
N )Γ(−iθ/2π)

]2

×SPP (θ,N →∞)

There are r-particle bound states with mass

mr = m
sin
(
πr
N

)
sin
(
π
N

) , r = 1, . . . , N − 1

The presence of bound states makes it impossible to calculate the
form factors. The possibility of incoming particles fusing must be
accounted. (Bound-state pole axiom)
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N=2
Form factors of this model have been known for a long time, solved

by virtue of

SU(2)× SU(2) ' O(4),

or explicitly:

U(x) = n0(x)1 + ~n(x) · ~σ.
The SU(2) theory can be mapped into a vector model (instead of

a matrix model). The first form factors for the O(N) sigma model
were found long ago by Karowski and Weisz (1978).
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Our less ambitious result for finite N
For arbitrary N (2 < N <∞), only the two-particle form factors

can be found. This is possible essentially because there is only one
particle and one antiparticle, with no possibility of bound states.

〈0|jLµ (0)a0c0|A, θ1, b1, a1;P, θ2, a2, b2〉

= (p1 − p2)µ

(
δa0a2δc0a1 −

1

N
δa0c0δa1a2δb1b2

)
× 2πi

(θ + πi)
exp

∫ ∞
0

dx

x

[
−2 sinh

(
2x
N

)
sinhx

+
4e−x

(
e2x/N − 1

)
1− e−2x

]
sin2[x(πi− θ)/2π]

sinhx
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Anisotropic QCD
Longitudinal Rescaling: x0,1 → λx0,1, x2,3 → x2,3

A0,1 → λ−1A0,1, A2,3 → A2,3

H = H0 + λ2H1 + λ2H2

=

[∫
d3x

(
g2

2
E2
⊥ +

1

2g2
B2
⊥

)]
+λ2

[∫
d3x

g2

2
E2

1

]
+λ2

[∫
d3x

1

2g2
B2

1

]
Examine theλ→ 0 limit

no H2 in 2+1 dimensions
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Longitudinal rescaling on the lattice
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Anisotropic Lattice, 2+1 dimensions
Gauge choice: A0 = A1 = 0, make x2 direction discrete.

H0 =
∑
x2

HPCSM(x2), with SU(N) fieldU(x) = eiaA2(x)

H1 = −
∑
x2

∫
dx1

∫
dy1 λ2

4g2
0a

2
|x1 − y1|

×[jL0 (x1, x2)− jR0 (x1, x2 − a)]× [jL0 (y1, x2)− jR0 (y1, x2 − a)]

We compute corrections from 〈Ψ′|H1|Ψ〉 with our form factors
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Wait, does that say A0 = 0 and A1 = 0?
E1 is not 0
This is OK as long as long as you deal with the weird NONLOCAL

Gauss’s law that is left.
The electric field in the 1 direction is not zero, but determined

from Gauss’s law:

DµE
µ(x)Ψ = 0→ E1(x) = −

∫ x1

dy1D2(y1, x2)E2(y1, x2)

with the remaining condition∫
dx1D2E2(x1, x2)Ψ = 0

which in the anisotropic lattice becomes∫
dx1[jL0 (x1, x2)− jR0 (x1, x2 − a)]Ψ = 0.
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Form factor perturbation theory
We can define a ”transfer matrix” to evolve the system in the x2

direction:

Tx2,x2+a = e−
1
2H0(x2)−1

2H0(x2+a)−H1(x2,x2+a)

Truncated spectrum approach: Organize states of H0 by energy
|1〉, |2〉, |3〉, . . . , |n〉.

En is the truncation energy.

The (now finite) matrix Tjk = 〈j|Tx2,x2+a|k〉 can be diagonalized
numerically.

Real space renormalization group: we can study the dependence
of physical quantities (mass gap, string tensions) on the truncation
energy En.
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